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Abstract—In this paper we analyse the propagation of plane waves in generalized thin elastic rods. We obtain
relations between Hadamard stability and criteria that wave frequencies be real. Certain design estimates for
Hadamard stability in helical and straight rods are also presented.

INTRODUCTION

Ericksen[1] and Shahinpoor[2] have recently given analyses of propagation of plane waves in
thin elastic plates and circular cylindrical shells, respectively; they have obtained relations
between Hadamard stability and criteria that wave frequencies be real. They have derived the
condition of hyperellipticity for thin elastic plates{1] and the restricted condition of
hyperellipticity for thin elastic circular cylindrical shells[2]. In these media plane waves are
generally dispersive and generate acoustical activity.

In this paper I intend to do the analogue of [1] and [2] for generalized thin elastic helical rods.
first derive the governing equations of motion from an isochronous Hamilton’s principle in
N-dimensional Euclidean spaces, employing the kinematical variables proposed by Ericksen and
Truesdell[3], Cohen[4], and Antman[5]. I then give an analysis of plane waves in rods whose
reference equilibrium configurations are uniform, in the sense of Ericksen[6]. This essentially
means that the reference equilibrium configuration is chosen in the form of a rodi curved and
twisted spirally around a hypothetical fixed circular cylinder. Straight rods are included as special
cases. I show that a criterion for reality of frequencies of plane vibrations implies Hadamard
stability. I also discuss the phenomena of dispersion and acoustical activity of plane waves in
rods. Finally, I present certain design estimates for Hadamard stability in helical and straight
rods. I do not mention all works in the area of elastic rods. However, I must mention that Mindlin
and Hermann[7], Mindlin and Mcniven[8] and Medick[9] have analysed certain properties of
acceleration waves in straight rods. Furthermore, Whitman and Desilva[10] have obtained
sufficient criteria for stability and uniqueness of solutions in elastic rods under dissipative forces
and couples and Antman{11] has shown that certain instabilities in elastic rods can be interpreted
as what is commonly called “necking”.

2. GOVERNING EQUATIONS
In the general theory of motion of rods [3-5], a rod is considered as being a smooth curve C,
embedded in a three-dimensional Euclidean space E,, its position vector from some fixed origin
being given by
r=#X,1), Q@.n

where X is the material coordinate of the curve C, and ¢ is the time. Furthermore, to every
particle X of C,, which is assumed to be the loucs of centroids of cross sections of the rod in
some reference equilibrium configuration, there are assigned n deformable vectors

d=d(X,t), (i=12,....,n). 2.2

Associate Professor Mechanical and Aerospace Engineering.
tAn oriented curve.

861



862 M. SHAHINPOOR

As discussed by Antman[5], the Cosserat model of rods (2.1), (2.2) with n =2 has sufficient
kinematical structure to acount for torsion, flexure, axial extensions, transverse extensions, as
well as rotory inertia. We assume that r and d; are of class C*.

The total energy E, associated with C, is assumed to be of the form

E=}1 (W+K)dX, 2.3)

where W, K are, respectively, the densities of strain and kinetic energies. We assume that the
curve C, is elastic in the sense that the constitutive equations aret

W=Wrx;d;dx; X),ij=12,...,n, (2.4)
= p(X)iF + 2p(X)id: + ps(X)diod; 20 (2.5
K=0oi=d =0, (2.6)

where p is the mass density, p; are scalars having the dimension of mass density, and p; = p; are
the effective inertial mass densities associated with director velocities d; and d,.

As usual W is assumed to be invariant under static rigid translation and rotation in order to be
objective.§ This implies that

W(Rrx;Rdi;Rdyx; X) = W(rx;di;d;x; X), Q7
where R is a proper orthogonal transformation in E;, i.e.
R'=R7,dettR=1. 2.8)

Following Ericksen[1], we introduce a 3(n + 1)-dimensional Euclidean space & Let us take
(n + 1) vectors {r,d.} in E, and generate from them a 3(n + 1)-dimensional space in which each
vector is an ordered set of vectors in E; associated with the ordered set P={r, d,}. Throughout
the paper bold-face and script capital letters denote, respectively, vectors and linear
transformations in €. For example, if A =(a, b,)e¥, ¥ is defined as a linear transformation on A
such that

= (pa + plbi, pia + p.';bi)E%. (29)

In &, the three-dimensional scalar product induces one inner product. If A,=(a,, by),
A; = (a;, by )€%, then the above inner product is denoted by

ATA; =a;-a,+by; ‘bai. (2. 10)

It is clear that ¥ is symmetric, i.e.
| ASHA; = HASA,, @.11)
and from (2.5) it is positive definite, i.e.
2K =BHP, =0, VP:ieg 2.12)
K =HT =0, (2.13)

with superscript T denoting the transpose. A linear transformation R in E; corresponds to a
linear transformation ® in &, e.g.

(Rr,Rdi) = R(r,di) = RP. (2.14)

tThroughout the paper commas denote partial derivatives with respect to material coordinate X and superposed dots
denote partial derivatives with respect to time.

$Summation is applied on indices i and j.

§This also implies invariance under time dependent rigid body motions.
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The converse, however, is not generally true, i.e. there exists no linear transformation R in E;
such that (Rr, Rd,) = ¥P.

In what follows the ordered set P=(r, d;) plays the role of a set of generalized coordinates
associated with rods. From (2.7)-(2.14) we have

W=W(E@,Px X)= W@RP, RPx, X), (2.15)
P=(r,d), (2.16)
where P plays the role of generalized coordinate in €. Let [¢t,, t,] denote a closed time interval

with t, and ¢, fixed, and let [ X, X,] denote a fixed material coordinate interval. We now employ
an isochronous Hamilton’s action principle for the motion of the rod, i.e. we require that

j [(fxx oL dX>+ Lx (F°5P) dX] d + f [T°8PJ3%, dt =0, @17
SP(X, to) = SP(X, 1) =0, 218

for all arbitrary intervals [to, t.], and all arbitrary variations 8P. In (2.17), L* is the Lagrangian,
given by

L*=1P°HP- W(P,Px, X), (2.19)

F is the generalized body force per unit material length, and T is the generalized boundary
traction and couple. Performing the variation in (2.17) and employing the divergence theorem,
assuming C, and P to be sufficiently smooth, we obtain the following governing equations of
motion and boundary conditions, respectively:

[%L - %v_: FF= %P (2.20)
T(X,, 1) = [%L, (2.21)
T(X,, 1) = [%’_Y;]X‘ 2.22)
With the notations
T Eﬁ%’ M= -3 (2.23)

the condition for static equilibrium in the reference configuration is found from (2.20) to be
Tx+M+F=0, (2.29)
where the bar denotes evaluation in the reference equilibrium configuration.

3. DESCRIPTION OF THE REFERENCE EQUILIBRIUM CONFIGURATION

We consider a reference equilibrium configuration for the rodf, uniform in the sense of
Ericksen[6], in the form of a cylindrical helix;

F=[a coshX, a sinbX, cX], 3.n
(_l.- = [b; COS(bX + C.'), bi Sin(bx+ C,'), e(], (32)

where a, b, ¢, b,, C,, and ¢; are fixed constants for each given configuration. Equation (3.2) implies

+An oriented curve.
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that each d,, (i fixed), makes fixed angles with the tangent, the binormal and the principal normal
to the line, while retaining a fixed magnitude. From (3.1) and (3.2) it is clear that a =0,
corresponds to a straight rod which is generally twisted, while ¢ = 0, corresponds to a circular
rod which is generally twisted. The value of F necessary to maintain a uniform reference
equilibrium configuration (3.1), (3.2) should be calculated from (2.24).

We now make the following change of variables

r=f'+1ép,d.~=léqi, (33)
where
cosbX -sinbX 0
R =|sinbX cosbX 0} (3.4
0 0 1

Note that R £ R™!, det R = 1. Further, it is easily shown that

RTix =ax =(0,ab,c), 3.5)

P
R.x = RSx = SxR, (3.6)
0 -1 0
Sx=-Sx"=b|l 0 0}, (3.7
0 00
q: = Const.,,p=0. (3.8)

In abbreviated 3(n + 1)-dimensional notation,

P =(0)+%Q, (3.9)
Q=1(p,q). (3.10)

Px =RTx, (3.11)

Tx = Ax + #xQ+Qux, (3.12)
P x = IR = Rx. (3.13)
Ax =(ax,0), (3.14)

and ¥x is a n X n diagonal matrix whose diagonal elements are 3 x 3 matrices such that
Fx = ”yxT=Sx3ij. (3.15)

where 8; is a n X n Kroncker delta.
From (3.1-3.15) we have for homogeneous materials only,

W(P,Px)= W(RP, A P,x) = W(Q, Tx), (3.16)
W _ LW oW _ . oW
3= 7 7Q P~ LTy (3.17)
We now introduce a new function B such that
B(Q,Q.x) = W(Q, Tx). (3.18)

Of course B will be different for different choices of f, R, insofar as they give different values for
the constants Ax and ¥x. It follows that
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3B _aWw _ oW

70-30" "0 3.19)
B oW
Qe 3Tx 20
The governing equation (2.20) now reduces to
3B B ot
oo 5] -
G=%""F. (3.22)

4. LINEARIZATION AND AN ANALYSIS OF PLANE WAVES IN RODS

It is clear that for the reference state C,, Q = Q = constant. To maintain such a ground state in
equilibrium one should calculate the necessary constant value of G. For example if F = & F with
F denoting a specified constant generator of the dead load in G, then G =G = F. We proceed to
linearize about Q by carrying out the well-defined mathematical process of linearization
consisting of taking the first variation or Fréchet derivative of the governing equations. To do this
we put Q = Q + ¢V into the governing equations, differentiate with respect to € and let € 0. The
resulting equations are:

LY x + FXV x + V=KV, (4.1)
where
3°B
XX _ ~ PXXT

£ = 8Q,x8Q,x £ “.2)
MK = 7030 4.3

b Bzé T
$=6Q5Q=££ 4.4)
FX =T - M* = -5, 4.5

where $*%, M#*, ;2", and &£ are all 3(n +1)X3(n +1) constant matrices and bar denotes
evaluation at Q= Q.
In order to analyse plane waves we consider solutions of the form
V=AetXen, (4.6)

where A and w are generally complex constants while k is assumed to be real. The substitution of
(4.6) and (4.1) reduces the latter to

(¢ -0’ HA=0, 4.7
where
H =Lk~ Lk - L = H(k) 4.8
It is clear from (4.2), (4.4), (4.5) and (4.8) that
Hxk)y=HT(k)y=H(-k), 4.9

and therefore % is Hermitian and generally complex. It follows that the roots w>(k) obtained
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from
det. (¥ - w’X) =0, (4.10)

are all real which means o is either real or pure imaginary. Because of the properties of # and ¥
for all complex 3(n + 1)-vectors BeZ, the following quadratic forms are real

b =B*%B,¥V =B*%B=0. 4.11)
The eigenvalue problem (4.7) defines the following extremum problem
w? = ext. [®/¥], (k fixed), 4.12)

where 3(n + 1) extremum values are denoted by wx’, (N =1,2,. .., 3(n + 1)). Note that wy’ = 0 if
and only if ®=0VB or equivalently

B*%¥B =0, VBeZ and real k. (4.13)
Since k is real, (4.13) can be rewritten as
iBk° L™ (iBk)* + B°¥L*(iBk)* ~ B°LB* = 0. (4.14)

Condition (4.14), which is a criterion for the reality of frequencies of plane waves in rods is called
condition of hyperellipticity, in rods. It is straight forward to show that, with w real, one solution
(4.6) generates three others so that adding the four gives a real solution of the form

V = (D coskX +E sinkX) coswt, (4.15)
D=A+A* E=i(A—A*). (4.16)

From (4.15) it is seen that, when (4.14) is satisfied, then for each k there exist 3(n + 1) Fourier
“plane wave” components each travelling at its own speed and frequency. The above
observation, thus, gives rise to dispersion and acoustical activity. If D = aE, with a an arbitrary
real constant, then it follows from (4.16) that A can be taken to be real. This is an exceptional case
unless the ground state is such that

X _ (9_ng _ 32B
=0 3Q3Qx 0Q,x9Q’ “1n

in which case there is no acoustical activity, though the plane waves are still dispersive in general.

5. STATIC STABILITY ANALYSIS

In order to study the static stability of the reference equilibrium configuration, we should
consider the change in energy 6E of an isolated system, defined as

BE = 6Eo+ 8E1+6Ez, (51)

where
8E, = [ ‘ [W(P, P,X) - W(P’ l_’,x)] dX (52)
- fx '[B(Q, 0,x) - B(Q,0)]dX, (5.3)

X, - X,
8E,=—-| F@-P)dX= —j G°VdX, (5.4
Xo

Xo
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and 8E; is the change in energy due to end loads. From (5.1-5.4) we find that

xl
8E =f x(V, V,x) dX +[TVI%: + 6E,, (5.5)
where
x(V,V.x) = B(Q,Q.x) - B(Q, 0~ T°V,x + &V (5.6)
. B . OB
T=6Q,x’ G=—-5—Q—. 6.7

From the remarks in section 4, if we take 6E to be the first variation of E, then
2x =V oLV x + 2V M*V,x —V°ZV, (5.8
We employ the traditional static stability criterion:

SE =0, 5.9
for all V that are continuous on the closure of C, square integrable along with V,x, and consistent
with any kinematical constraints imposed by the edge loadings. Knops and Wilkes[12] have
discussed why (5.9), with 8E interpreted as the first variation in E, may not be a sound criterion
for stability. Let us consider a common loading device, one most likely to promote stability, in the
form of hyperclamps, i.e. completely glued or “welded” boundary cross sections, by setting

V(Xo)=V(X1)=0,8E,=0. (5.10)

Condition (5.7) reduces the criterion (5.9) to
xl
J’ x(V,V,x)dX =0, V(Xo) = V(X)) = 0. : (5.11)
Xo

We refer to (5.11) as the Hadamard stability criterion for generalized elastic rods. We follow the
approach of van Hove[13] and extend the domain of V to the entire line in the reference
equilibrium configuration, setting

V =0 outside [Xo, Xi]. (5.12)

Employing the Fourier transforms

—
Vik) = \/% Ve dXx, (5.13)
Xo

R T %
~ikV(k) = \/EI V,x e** dX, (5.14)

Xo

the inverse transforms

V= \/% f Vik) e~ dk, (5.15)

1 RN — kX
V.x = \/5; 'La (—ik)V(k)ye ™ dk, (5.16)
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and Parseval’s theorem, with V real, we obtain

o Xl
J’ VRV¥dk=| V®VdX (5.17)
. X
- . X, X,
f V®(—ikV)*dk:f V®v,de=—f Vx @V dX, (5.18)
— Xo Xo
£ R X,
f (iVk) ® (iVk)* dk = f V.x @ V,x dX, (5.19)
. o

where @ denotes the tensor product. Employing (5.17-5.19) in (5.11) we obtain
Xl = ~ A A A A
2 f x(V,V.x)dX = J’ (VKL (VR + Ve EX(VE)* -V £V]dk =0,  (5.20)
Xo —ec

which should hold for all real k,s. We can now state the following theorems:

Theorem 1. The condition of hyperellipticity (4.14) necessary that the frequencies of plane
waves be real is a sufficient condition for Hadamard stability of any elastic rod whose reference
equilibrium configuration is uniform.

The proof easily follows by comparing (4.14) and (5.20).

Theorem 2. The condition of hyperellipticity (4.14) necessary for the reality of frequencies of
plane waves implies the strong-ellipticity condition

CCL*C*=0, VC. (5.21)
The proof follows by dividing (4.14) by a positive number k> and then letting k — .
Note that (5.21) does not imply (4.14) because the dependence of y on V is not restricted.

We now show that (5.21) is necessary for Hadamard stability.t We consider (5.11) and note
that V can be expanded in a Fourier series, i.e.

Xi—Xo=1, (5.22)

V=§1A,. sinmrg,g:X]’X"

X ‘-Xo’

Substituting (5.22) in (5.11) and performing the integration we obtain

o0 2 2 oo
> {Azz""An%zl— [mz As,,z”‘g,.,.,Amz‘-l] —A?.,%’An} >0, (5.23)
where
0, n*m even
8rm —{ dnm__ (5.29)
n*—m®> n+modd, n#m.

Condition (5.23) must hold for all real vectors A, and all lengths [ 1t follows from (5.23) that
Theorem 3. The strong-ellipticity condition (5.21) is necessary for Hadamard stability.
Proof. In (5.23) let all but one A, =0, and take n large and the proof follows.

4. STABILITY DESIGN CRITERIA
As noted before the strong ellipticity condition is necessary for Hadamard stability in rods.
On the other hand, I showed that the hyperellipticity condition is sufficient for Hadamard
stability. I shall now seek a condition intermediate between the strong ellipticity condition but
sufficient to ensure Hadamard stability.
First we note that

X, o0 R n n . n
2 x(V,V,x)dX = f [A K (VoV*) + VoL X (ikV)* — VoV dk, (6.1)
Xo o

+This is a known result (see Graves[14]). Here, however, we present a simpler approach.
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where A, is the smallest eigenvalue of £** such that
C°F™*k*C* = A, k*(C°CH). 6.2)

From (5.17-5.19) and (6.1) we obtain

X, X,
[ yax= J A VoxVox = VXV, — VEV] dX. 63)

Xo Xo

By the Schwarz inequality

X, X, 12 X, 12
f (VoLXV %) dX’ < ( voy dx) ( (LXV°LXV ) dX) _ 6.4)
Xo Xo Xo
Furthermore,
«ngfxng,x = A2(VixV,x), A2 =0, (6.5)
VoZV = A(VV), A =max (o, A3), (6.6)

where A, A are, respectively, the largest eigenvalues of the symmetric tensors £*"$* and £.
Let us now employ the Poincare’s inequality

Xl xl
VoY) dXsﬁl(L)f (Vex V) dX, ©.7)
Xo Xo

V(Xo)=V(X1)=0,p.(L)>0. (6.8)

Employing (5.22) it can be easily shown that the best constant p,(L) is

puL)= =212 (6.9)
From (6.3-6.9) we obtain
X, X, . .
2 [ yax= f [ = A2 = Am 2 21(Vox Vi) dX (6.10)
Xo Xa

Therefore:
Theorem 4. A sufficient condition for the Hadamard stability of any elastic rod possessing a
uniform reference equilibrium configuration given by (3.1), (3.2), is

(A= 77 0" = 772 20) =0, A = max (o, As), 6.11)

where A, A,, A;, are material constants given by (6.2), (6.5), and (6.6), respectively.

Theorem 5. For all sufficiently short helical rods whole reference equilibrium configuration is
given by (3.1), (3.2), the strong form of the condition of strong-ellipticity [A, > 0] is sufficient for
Hadamard stability.

Proof. Clearly, A, >0 = (6.11) for [ sufficiently small and the proof follows.

Theorem 6. For the reference equilibrium configuration (3.1), (3.2), strong-ellipticity implies
Hadamard stability for all [ <=, provided X =0, — £ >0.

Proof. Under the above conditions it is obvious that A, =A =0 and (6.11) reduces to

A =0 (6.12)

It appears from the present analysis that the hyperellipticity condition (4.14) is more
appropriate for long helical and straight rods. For very short rods the strong ellipticity condition
should suffice as a check for stability. For moderate lengths the designer should consult the
intermediate criterion (6.11) for Hadamard stability.
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